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ABSTRACT

We cons ider an M/M/l queue which is controlled by dynamically

setting the customer ’s entrance fee to either b 1 or b2>b 1 and

thereb y setting the customer arrival rate to either or

respectively. With EEF] the expected fee collected per unit of

time and the steady state probability that the system contains

more than N customers , we consider two criteria: (1) for some

number ~~, minim ize 
~N 

sub ject to E[F]~ i , and (I i) for some number

~~, max imize E[F] subject to PN~ C• Under each criter ion we

consider two cases: (a) the adm issible policies are single

cri tical number switching policies and (b) a cost y~O is

incurred whenever the server switches between b 1 and b 2, the

admiss ible policies allow for hysteresis to appear in the

arr ival process. Optimal p olicies are computed for each criterion

and each case.
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- i  One can observe , in the literature on queueing theory , a

growin g interest in the control of the arrival process. For

most of the published models , the aim is to maxim ize the

difference between fees collected and costs: It Is explicitly

assumed that the fees and costs can be measured and are expressed

- 

- 

in the same units .’, They are then merged i nto a single objective

• funct ion (Naor [7], Yechiali [12 ,13], Edel .son & Hildebrand [1],

Teghem [10] or Low [5,6], among others.)

In fact , it is recognized that such a merging cannot always

be done. ~Just to give one example , we observe that the fee

charged to customers may be an arbitrary notion (as noted by

N ielsen [8]: “the pr icing of computer services is not dependent

upon charging users real money ”); in such a case, i t m i ght be

diff icult to express costs in the same unit as the fee. We

assume in this paper that the reason for controlling the arrival

process is to ac hieve some balance between acceptance and

rejecti on of customers; while lett i n g customers in i ncreases

the fee collected , an excess of cus tomers should be avoided.
‘~-,‘ 2~~L4 

~~~~e~conside t~-’the two objectives of maximizing the fee collected

and m inimizing queue congestion as distinct. If it is not

possible to optimize these simultaneously , then the problem w i ll

be to maintain one of them at a reasonable level and , under tha t

constraint , to optimize the other. ~~~
—

In anot h-~r paper [4], we consid ~ red sim ilar models where the

two objectives are merged into one single function. The analysis

and results in [4] are both quantitatively and qualitativel y

different from those we present here.



Specifically , we assume that the server may dynamically

set the entrance fee to either b 1 or b2>b 1 ; the arrivals form a

Poisson process with parameter A 1 or A 2<A 1 respectivel y.

The service times are independent , i dentically distr i buted ,

exponential (~~) random var i ables , independent of the arrival

process.

The waiting room is infin ite , but the total number of

cus tomers in the system should preferably not exceed some value

N , called the cr itical level.

With E[F], the expected fee collected per unit of time , in

stead y state and the steady state probability that the system

conta i ns more than N customers , we consider two criteria:

(I) for some number 3 minimize 
~N ’ 

sub ject to E[F]~ F ,

and

(ii) for some number € maximize EEF], subject to

Under each cri terion , we consider two cases :

(a) the admissible policies are single critical number

switching policies, they are characterized by a number M: if

there are fewer than M customers in the system , the entrance fee

is b,~, otherwise It is b2;

(b) a cost ~~O is incurred whenever the server switches

be tween b 1 and b2 and the admissible policies allow for hysteresis

• to appear In the arrival process. These polici es are characterized

by two numbers , m and M (m�M-l) : if the fee is b 1 and the

number of customers Increases from (M-l ) to M , the fee becomes b2;

if the fee is b2 and the number of cus tomers decreases from (m+l )

to m , the fee becomes b 1.
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• Hysteresis in the service process has been considered by

several authors (for instance , Yadin & Naor [11] or Teghem [10]).

To the best of our knowledge , only Scott [9] has considered

hysteresis in the arr ival process; we comment more on this paper

in Sect ion 4.

• O ptimal policies are computed for each criterion and each

case.

The policies we determine are not necessarily optimal with

respect to larger sets of admissible control policies. For

i nstance , we mention in Sections 6 and 7 that even with y=O ,

some pol icy with hysteresis may be strictly superior to every

single critical number policy . Moreover , one can de term i ne

randomized stationary policies which are strictly superior to

any policy in the classes we have considered. Nevertheless ,

these pol icies are easily Implemented and can be efficient , as

we show by examples In Section 8.

The optimal sin gle critical number policy is determined

ex plicitly for the first criterion; for the second criterion , the

optimal policy is determined explicitly for large c , through an

equation with a unique solution for small c (this is made precise

In Section 3). To find the optimal policy with hysteresis , we

use properties of E[F] and to determine a fin ite number of

pa irs (m,M) among which the bes t is to be found numerically.

The compu tations involved are straightforward. We shall not

present detailed proofs; some of them are quite lengthy and are

presented in [3].

L ~~~~~~~~~~~~~~~ • • •• • •~• • ••
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To conclude the introduct ion , we comment on our measure of

f I queue congestion , the probabil i ty 
~N 

of hav i n g more than N

customers in the system . In some cases , a more appropriate

measure mi ght be the expected queue length or the mean cost of

waiting if customers were able to measure such a cost.

For the first cri terion , the optimal single cr itical number

policy would be the same ; it appears in Section 2 that the

optimal value for M does not depend on N. In the other cases ,

we suspect that the analysis would follow the same l ines although

the details are of course different.



T
1. Control With a Sin gle Critical Number

In this case , the model is simple to analyze and most of the

resul ts in Sections 1 to 3 are intuitively obvious. As stated in

the introduction , we assume b 1 <b 2 and A 1 >A 2.

• A 1Moreover , if p 1=—, 1=1 ,2, we assume that p 2<l , wh ile p 1 may

be less than or greater than 1.

it is obvious , therefore , that steady s tate condit ions are

sat i s fied if M~~ or M=~ and p 1 <l .

Let

= P[i customers in the system in steady state~M]
and

P1 (M) = E
j=i+l 1

we shal l  refer to the P~ ’s as the tail probabilities .

One can easil y solve the system of equations for the

probab iliti es ir 1 (M) (1=0,1 ,...) and , from there , one gets for p 1 �l

1+1 M
Pi (l— p 2)—p 1 (p 1 —p .,)P (M) = ‘ i~ M , ( la )

l— p 2—p 1 
p
1 —p 2

M i-M +l(1-p )p p

l— p 2—p !~(p1 —p 2) 
—

for p 1 =l , the corresponding formulas are

l +(M — i— 1 )(l—p )
i 

— 

l +M( l—p 2)

i-M +lp 2
= 1+M(1~ pjT 

i~ M.

~

.• • •

~

• •

~
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Lemma 1: For all i , P1 (M) is an increasing function of M.

This pro perty is Intuitively obvious: if M increases, the

number of states for which the arrival rate is A 1 (>x 2) increases

and the probability of having more than I customers increases .

Now , let

r(M) = E[fee collected per unit of time in steady statefM ].

Of course ,

r(M) = A 2b2 + (xl b l
_ A
2b2

)(l_P M_ l (M)). (2)

where
M,

PM..l (M) Ml— p 2 —p 1 (p 1 —p 2 )

Lemma 2: r(M) is an increasing function of M if A 1 b 1~ A 2b2
; it is

cons tant if x 1 b 1 =A 2b2 and decreas i ng i f A 1 b 1 .cA 2b2.

This resul ts from the fact that PM_ l (M) is decreas ing in M

for all finite value of p 1. The follow ing result is an immediate

consequence of Lemmas I and 2:

Theorem 1: If A 1 b 1 <A 2b2, it is optimal to set M equal to 0.

In fact , onl y if A 1 b 1~ A 2b2 can one reach simul taneously the

two objectives: maximize r(M) and minimize PN (M) and it is done

by choos ing the fee b2 always. We shall assume in the next two

sec tions that A 1 b 1 >A 2b2.

_____ j



-
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2. Constra int on the Expected Fee

Su ppose it is decided that the expected fee r(M) must be at

least equal to some predetermined value ~~~. The problem is then

to f i nd M 1 such that

r(M 1 )~ i~ (3)

and

PN (M l )~
PN (M) for all M such that r (M)�~ .

Let r(~~)=lim r(M), one gets eas ily from (1) and (2) that

lim 
~M 1(M) = 0 if p

1~~l ,M+o’ -

p — 1
= p, >p l —p 2 I

hence
r(~~) = A

1 b 1

p — l 1— p
= A b  1 + A b  2 < A b  p > l .2 2 p 1 — p 2 1 1 p 1 —p 2 1 1 1

Clearl y, i f M i s equal to ~~~, the expected fee over any

i nterval of ti me i s A 1 b 1 ti mes the leng th of th at i nterval , even

if p 1 >l . Therefore , if r(M=oo ) denotes the value of r(M) when M~~ ,

we shall cons ider that r(M=oo)=A 1 b 1 for al l  A 1 .

Theorem 2:

If A 1 b 1
c~ , then t here i s no solu ti on;

M 1
o~;

A 2b 2~ r<r(co ), x2>0 M 1 1x 1 1;

O <r(o’), k2=0 M 1 =max(N ,1x 1 1);

r<A 2
t,2 M 1 0;
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where
x 1 —lo g( 1 +y)/logp 1 if p 1 $l ,

if

y ((i~—A 2b2)(l—p 1 ))/((x 1 b 1 -~ )(1—0 2 ) )

an d rxl denotes the smallest integer greater than or equal to x.

The proof of this theorem is easy and can be found in [3].

Ob serve that i f A 2=0 , the level M takes on a special meaning:

it is the maximum number of customers the server allow s In the

system. If x 1 as defined in the theorem is less than (N-i), then

the solu ti on is no t uni q ue , since PN (M) 0 and r(M)~~ for al l

M= 1x 1 1, 1x 1 ]+l ,...,N. However , s i nce the cr i t ical  level has

been set to N and not a smaller value , M 1 should be N s i nce

r(N)>r(N-l)> ... Therefore , if A 2=0 , then M 1 =max(N ,1x 1 1).

If A 2$O , then M1 does not depend on N , therefore , if the

objective is to keep the expected fee at the level i at least ,

it is not necessary to determine a critical level N: M 1
m inimizes the tail probabilities P

~
(M) for all i>O and minimizes

the expected queue length. To analyze M 1 as a funct i on of the

different parameters , one analyzes either the explicit expression

for x 1 or r(M). It appears that M 1 is , tr ivially ., a (non

str ictly) increasing function of ~ and a decreas ing function of

all the other parameters : A 1 , A 2, i , b~ and b2.
One can s how a l so t hat i f ~ is a linear combination of A 1 b 1

and

= wA 1 b 1 + (l—w)A 2b2

for some WE (0,l), then M1 i s f i nite if and only if ~~ i s g reater

than the same linear combination of A 1 and A 2 :

ii>w A 1 + (l -w)x 2.

a 
- • •- -~~~ .~~~-- -



3. Constra int on the Tail Probabilit y

Suppose now , contrary to the pre ceding section , that
it is decided that the probability of having more than N customers

in the system has to be less than some given value c.  The problem

is then to find M2 such that

PN (M2)~
c

and (4 )
r(M 2)~ r(M) for all M such that PN (M)

~
c.

M2 is determined very easily. Two cases must be di stinguished:

if PN
(N)

~
E , it resul ts from Lemma 1 tha t M2 is greater than or

equal to N and is determined using equation (la); if PN (N)>c , M2<N

and equat ion (ib) has to be used.

Note tha t

PN (oo)=l im PN (M)=min(l , N+l )
M+co

and that PN (O)=p~~~ should be smaller than or equal. to c in

order to have a solution.

Theorem 3

If c<p~~
’, there is no solut i on;

N+1 . N+1p 2 ~s<m in( l ,p 1 ), M2 1x 2J ;

N+lm in(l ,p 1 ~~~~~

w here x2<N is the unique nonnegative root of the equation

x, , N+l ,
~~ l

,’p
2~ 1 P 2 P 1~~P 1 P 2 f l /~~P 2 ~.

l_ P
l

if p
~~~~

c<P N (N); (6)

and x2~ log {(l_p
2)(p~~

’_ c )/((p 1
_ p

2 )(l_c)) }/1ogp 1~ N

_ _  
____ -..~~•--~~~-•--.~~~--.--•• • •-. •- • -~~~~~~~~~~~~~ --•-•- • • •~~- •~~
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if PN (N)~ c<min(l ,pr1 ) (7)

and Lx i denotes the greatest integer less than or equal to x.

Proof of this theorem can be found in [3].

In the str i ct sense , equat ion (5) may have two non negative

roots if c=p~~
1 : x=O and some pos itive root , say x*. It can be

seen eas i ly that in this case , x*cl and therefore there is no

ambiguit y on the value of M2: both ~OJ and Lx *J are equal to 0.

Observe that x2 does not depend on b 1 or b2. Therefore , if

the objective is to keep the probability PN (M) at the level c

at most (c~ p~
1i ), there is no need to determine precise values

for b 1 and b2; It suf f ices to c heck whether A 1 b 1 >X 2b2 (it is

more advanta geous to let many customers in the system) or not , in

the first case, theorem 3 applies , in the second , theorem 1 and

M2=O. There is no expl icit form for M2 if M2 cN. However , It

is very easy to determine numerically a suitable approximation

for x2 us ing standard methods; as M2 is integer valued , one does

not need a very high precision on this approximation and it is

found rapidly.

By analyzing PN (M) as a func tion of the different parameters ,

one shows that , not surpr isingly, M2 is a decreasing function of.

A 1 and A~ and an increas ing function of ii , N and c .
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4. Control with Hysteresis

We shall examine now the second type of control , w here

hysteresis is introduced in the arrival process.

Let us assume A 1 b 1 >A 2b2. If A 1 b 1~ A 2b2 , it can be shown that

the optimal rule is to impose the fee b2 always.

Let us assume fur thermore that y
~
O where y is the cost

incurred by the server each time there Is a change of fee and

M— l� m ~O (8)

This last inequal ity means that the fee is certainly b 1 when the

system is empty and the only purpose of this assumption is to get

a more un iform presentation of the results.

The determ ination of the state probabilities and the expected

reward is no t as straightforward as for the preceding type of

control. N. Scott [9] derives the probabilities when the maximum

queue size is finite.

In [3], we determine these quanti ti es — when the maximum

queue size is infinite - by using a different technique that can

be rou ghly described as follows:

Let r(m ,M)=E [fee collected per unit of time in steady state l (m ,M)]

and P 1 (m ,M)=P [more than i customers in the system in steady
sta te (m ,M)].

Obviousl y, r(m ,M) is equal to the expected total fee collected

during a busy cycle divided by the expected length of a busy

cycle and similarly for P1 (m ,M).

To study a busy cycle , we decompose i t into homogeneous

Intervals of time : first , there is an Idle period. When a first

customer joins the queue , there Is a random walk with absorbing 

- • --.--.—- -. .. — - --- -“~~~~~~~~~~- •~~~~~~~-~~~ •
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boundar ies at 0 and N , during th is random walk , the arr ival rate

• is constant and equal to A 1, the fee Is b 1. If ai.~or p t 1on i s i n

0, the busy cycle terminates; if absorption is in M , the server

suffers a loss y and a new random walk is initiated , w i th

absorbing boundary in m , arrival rate A 2 and fee b2. Upon

absorp tion in m , there is a cost y , a new random walk of the

first type is initiated and the process repeats itself.

The detailed computation for r(m ,M) is g iven in th.e appendix;

P1
(m ,M) is determined in much the same way , as can be found in [3].

Even tuall y, one gets for P~ (m ,M):

a. O~ i~ m
M-m i +l M(1—p j (l—p )p + (M-m)p (p -p j (l_ p )

. m , - M M1

b. m- l~~i~ M

p i+l
x—p 2

2 M-i i.. .
~~ M- i-1 M -i-l i-m+l 2(l—p 2) (1—p 1 )+ 

~‘ ‘ 1  , p
1 (p 2—p 1 )(l—p 1 

)(l_ ~2)+p 1 (p 2
_p

2 ) ( l~ p 1 
)

(l-p 2) 
(l_p ~

—m )+ (M_m )p~ (p 2
_p

1 
) (1—p

1
)

c. M—l~ i

M i-M +l 2 M-mp p (1—p ) (1— p )
~m , )-

and
p!~~

1 (l_ p
1 )

2(2y (l-p 2)+ (M_m)(b 1 p 1
_ b

2p 2 ))

(l_p
2
) (l_p

1
_m

)+ (M_m )p
1 (02

_p
1 )(1_ 0 1)
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5. Anal ysis of the Expected Fee and the Tail Probabilities

Lemma 3: For all i , P1 (m ,M) is an increasing function of m and M.

:
I This property can easily be justified in the same way as

Lemma 1. Note tha t there is no general relationship between

P
~

(m ,M) and P 1 (m ’,M’) if m cm ’ and M>M ’ .

The behav ior of r(m ,M) as a function of m and M is more

complex. Details can be found in [3] but we shall summar ize here

• the most important propert ies.

Lemma 4: For any given m , r(m ,M) i s an i ncreasing funct i on of M.

Lemma 5: For any given M , r(m ,M) is a unimodal function of m and

• we deno te by mM the correspondin g maximizing value.

In fact, we determ ine quantities y 1 (M) and y2(M) such that

~f ~
<
~ i (~~

) (the cos t ~ is small) then mM
=M _ l. for that value of

M the reward is max imum when there is no hysteresis; if y>y 2 (M)

then mM O : m should be as far apart from N as possible; if y

l ies between y 1 (M) and y2 (M) , mM i s de term i ned by f i nd i ng the

un i que root of some equa tion.

Remark: mM+l~
mM for all M~ l.

These proper ties and others give us detailed although not

comple te information on r(m ,M).



~~. -.- • -  ~~~~-- -~~~~~- • --~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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6. Constraint on the Expected Fee

• The problem is to find (m1,M 1 ) such that

r(m 1 ,M 1 )~~
and PN (m l ,M l )<PN (m ,M) for al l  (m ,M) such that r(m ,M)~~ .

Let ~7 be the set {(m,M)~ M= l ,2 ,...; m 0,l ,...,M— l } of all

pa irs satisfying (8) and let

= {(m,Mfl (m,M)Ec2, r(m ,M)~~ }.

Obviously, (m1,M 1 )€c ~1.
If 

~l is empty , the problem has no solution; if L~=c~, it

resul ts from Lemma 3 tha t (m 1,M 1 )(0 ,i), the fee should be b2
whenever there is a customer in the system; otherwise , we

proceed in two steps to determine (m1,M 1 ).

First, by using repeatedly the properties of r(m ,M) , we

prove tha t has the form indicated on figure 1: the dashed

region corresponds to c~-~~ ; the boundary of is made up of

two par ts: for increasing m , It is first non -increasing and

second it is non-decreasing until it coincides with the line m M-l.

We have marked by an x the “corners ” in the first part of the

boundar y. We denote those pairs by (m~ ,M~ ). We shall no t give

here the full definition of the (m~ ,M~ )’s , as it is very

cumbersome. Let us mentIon that they are ordered in such a way

that M~ <M~~ 1 and m~>m~~1. Their most important properties are:

M
~
=m in{M Ir(m M ,M)

~~
} ;

for a g iven m=m~ ,

1ff M~M~
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for a given M=M~ ,

r(m ,M~ )c~ for all m<m~ .

We then use Lemma 3 to prove the following theorem:

Theorem 4

(m 1 ,M 1 )€ {(m~ ,M~ ) , 1=1 ,... 1
X }

There is no explicit expression for (m1,M 1 ), one should

compare all (m~ ,M~ )’s to determine it. This can easily be done

numer ically. Note that I~ is at most equal to 1x 1 1 (defined in

Theorem 2) and is , in general , smal ler ;  we have thus an upp er

bound on the number of pairs that will have to be determined and

compared.

To anal yze the solution as a function of the parameters , one

has to resolve to computations. As an example , we have exam ined

how (m1,M 1 ) depends on N (see figure 2). For the single

cr itical number policies , we have seen tha t M 1 is i nde penden t of

N. For control wi th hysteresis , i t appears tha t (m 1,M 1 ) var i es

i n general onl y sl i ghtl y w i th N , i f at all; however , if ~ is

very close to the u r n  r(m ,M) and A 1 i s much larger than A 2, the

var iations are greater , as can be seen in figure 2. Those cases

do no t seem typical.

One can observe that if y=O , m 1 i s not necessar i ly equal to

(M 1 -l ) (Table I). In other words , even i f the server suffers no

cos t each time the fee is changed , it is optimal in some cases

to introduce hysteresis in the arrival process.
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.05 .1 .2 .3
2 2 3 3

N1 4 4 4 5

i .i l. , A 1 . 9 , i~= .8, b 1 =l. ,

y=Q , b 2 . 4/ A 2,  N=O ,l , . . . ,10

Table I

• ~~~~~~~~~• - -~~~~~~~~~ -- - -~~~~ -~~~~~~~--~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~-—- -~~~~ . •— -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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7. Constraint on the Tail Probabil ity

(m2,M2) Is defined as follows

and r(m 21M 2)~ r(m ,M) for all (m ,M) such that PN (m ,M)
~~~

.

Let c~2 {(m ,M)t (m ,M)€c~ and PN (m ,M)
~
c}. If 

~~ 
is empt y, the

problem has no solut ion. If it results from Lemma 4 that

and therefore m2 can take any value: the fee is b 1 always.

Otherwise, we use Lemma 3 to prove that 
~2 

has the form ind icated

on figure 3: the dashed region corresponds to 
~~~~ 

the boundar y

of 
~2 

forms a non-increas ing line for increasing m . We have

marked by a + some of the points in 
~2’ 

deno ted by (m~ ,M ) .

Again , we do no t define formally those pairs In this paper. Let

u: m:ntion that they are ordered in such a way that M~<M~~ 1 and

m~>m 1~~1. (m 1,M 1 ) is defined as follows :

= max{Mj P N (mM,M)
~~
},

+
m l = m~+ ;

the other pairs represent the “corners ” in the boundary of 
~2’ 

to

the lef t of (m~ ,M~ ); moreover , for a given m=m~ ,

i ff M~M~
+and for a given M=M~~

+ . +PN (m ,M i )~
s iff m~m 1.

We then use the properties of r(m ,M) to prove the following

theorem:
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Theorem 5

i=l ,.. . ,I~ }

To complete theorem 5 , we may add that

if (m ,M~+l )€c2 2, then (m2,M2
)$ (m ,M )

In other words , (m2,M2) l ies on the boundary of and (m ,M~ )

canno t be optimal if it lies inside Q~ . x 2 (defined in Theorem 3)

provides an upper bound on the number of pairs that have to be
+determ ined and compared , for I ~(Lx 2J+l ).

We have anal yzed numerically (m 2,M2) as a functIon of y and

it appears (figures 4 to 6) that N2 is a (non strictly) increasing

function of y while m2 is decreas ing. This property is not

surpr ising: if the cost y increases , the server should wa it

longer before swi tching to the fee b2 (M 2 increases) and wait

longer before sw itching back to the fee b 1 (the difference

(M 2-m 2) increases). This shows tha t , to the contrar y of th e

single critical number policies (see end of Section 3), the

optimal solution depends on the values assigned to cost and fees.

Observe that if y=O , m2 is no t necessarily equal to (M2-l )

(figures 4 and 6). 

-- --- .-.
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8. Com pari sons Between the Two Types of Policies

To conclude , we mention numerical compar isons between the

two types of policies when the cost y is positive: we can

determine as in Sections 1 to 3 optimal single critical number

pol icies .

Figures 7 to 10 present 4 examples corresponding to 2 values

for N (N=5 and N=i 0) and 2 values for y (y = .5 - which is small

compared to b 1 and b2 - and y=5 - which is large compared to b 1
and b2). On each figure , curves 1 and~ 2 corres pond to y .5,

curves 3 and 4 to y=5; curves 1 and 3 correspond to control with

hysteresis, curves 2 and 4 to control with a single critical

number.

Obv iously, controls with a single critical number yields less

good results , since they are special cases of controls with

hysteresis. As can be seen in the figures , the di f ference can

be substantial. Also , it appears that the optimal control with

hysteres i s i s eff icien t , exce pt under severe circumstances ,

such as small value for N , large cost y and qu ite large ~

(or smal l c ). •
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A pp endix

Let us denote by rm,M the expected total reward during a

busy cycle given m and M. Consider a random walk on {O ,l ,...,L}

with absorbing boundaries at 0 and L. Transitions are from n

to n+l (step to the right) and n to n-l (step to the left) if

n~ O and L. The interval of time between two steps to the right

(to the left) is negative exponential with parameter A (~~).
Because of the memoryless property of the negative exponential

distr ibution , the interval of time between any step and a step

to the right (left) is negative exponential with parameter X(u).

Moreover , P[n-..n+l]=A /(X+~.i) and P [n÷n-l]=ii /(X+ii) (nj~O and L). Let

a~ (L ,x ,ii)=P [absorption in o f initial state is n)

g~ (L ,x .M)=E[number of steps to the right before absorption In 0
or L l init ial state is n].

It is well known , see for ins tance [2] p. 314 that

L — l L-nan (L ,A ,I.)= (l_p ) ( lP  ) .

w here p A/’i .

We show in [3] that

If L tends to ~~~, we get , if p<l ,

an (o~
,x ,~ )=l

g~ (oo ,x ,u) no (l_ p )~~~.

To deterir4ne rm M ,  we decompose a busy cycle as follows .

First , there is an idle period , at the end of which a customer
enters the queue and pays b 1. Then a random walk be gins, wi th
absorbing boundary at 0 and N , parameter X~~, to each step to the
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right is associated a reward b 1. If absor ption is at 0, the

busy cycle terminates. Otherwise, a cost y is incurred and a

new random walk  beg i ns , with absorbing boundary at m , parameter

A 2, reward b2 for each step to the right. Upon absorption at m ,

a cost y is incurred and a new random walk of the first type is

i n i t iated , etc... Thus , if rm (rM ) is the total expected reward

dur ing the remainder of the busy cycle given that the queue is

in state m(M) and if g0~~ (L~ A ,u) (resp. g~~ fl (L.A ,~i)) is the

expected number of steps to the righ t before absorption given

that the initial state is n and absorp tion is in 0 (resp. L) we

get :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r~=b 2g~ .~~(oo ,x2 ,1J)+rm
_ y ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

As g
fl
=a fl

g0 fl
+ (l_ a

fl )g~ ~~
. one ge ts eventual l y

—b r i (M—m)p !~(p 1 -p 2)”~ p!~~~(l— p 1 )[2y (l_p 2)+ (M_m)(b 1 p 1 -b 2p 2
)]

rm M ~ 1L1
~~l 

- 

(1 )(1 M~m )J (1 )(1 M~m )
•(A.l)

Let 
~m ,M 

be the expected length of a busy cycle. We

determine 
~m ,M 

in [3] by the same technique we used to determine

rm ,M . We propose here another argument: (dm M  Is the idle

period (mean 1 /A 1 ) plus the amount of work brou ght by the

customers durin g the busy cycle. To get this amount of work , one

just replaces in (A.l) y by 0, b 1 and b2 by 1/p. .

This leads to
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r (M_m)p M (p )
..I r~

Wm,M
_
~7~~

_p
1 

- 

( 1 ) ( ] M f l 1 )J

From ( A . l )  a nd ( A . 2 ) ,  f t I s  eas y to check tha t

r
r(m ,M)= m ,MWm ,M

- b 
p~~~ (l-p 1 )

2(2y (l-p 2)+(M-m )(b 1 p 1 -b 2p 2 ) )
~ X

1 1 -A 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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